242 research outputs found

    Tobacco Industry Attempts to Influence and Use the German Government to Undermine the WHO Framework Convention on Tobacco Control

    Get PDF
    Background Germany has been identified as one of a few high-income countries that opposed a strong Framework Convention on Tobacco Control (FCTC), the WHO's first global public health treaty. This paper examines whether the tobacco industry had influenced the German position on the FCTC. Methods Analysis of previously confidential tobacco industry documents. Results The tobacco industry has identified Germany as a key target within its global strategy against the FCTC. Building on an already supportive base, the industry appears to have successfully lobbied the German government, influencing Germany's position and argumentation on key aspects of the FCTC. It then used Germany in its efforts to weaken the FCTC. The evidence suggests that the industry enjoyed success in undermining the Federal Health Ministry's position and using Germany to limit the European Union negotiating mandate. The tactics used by the tobacco industry included the creation of controversy between the financial, trade and other ministries on one side and the health ministry on the other side, the use of business associations and other front groups to lobby on the industry's behalf and securing industry access to the FCTC negotiations via the International Standardization Organization. Conclusion The evidence suggests that Germany played a major role in the tobacco industry's efforts to undermine the FCTC. Germany's position consistently served to protect industry interests and was used to influence and constrain other countries. Germany thus contributed significantly to attempts to weaken an international treaty and, in doing so, failed in its responsibility to advance global health

    Strategies for analyzing bisulfite sequencing data

    Get PDF
    DNA methylation is one of the main epigenetic modifications in the eukaryotic genome; it has been shown to play a role in cell-type specific regulation of gene expression, and therefore cell-type identity. Bisulfite sequencing is the gold-standard for measuring methylation over the genomes of interest. Here, we review several techniques used for the analysis of high-throughput bisulfite sequencing. We introduce specialized short-read alignment techniques as well as pre/post-alignment quality check methods to ensure data quality. Furthermore, we discuss subsequent analysis steps after alignment. We introduce various differential methylation methods and compare their performance using simulated and real bisulfite sequencing datasets. We also discuss the methods used to segment methylomes in order to pinpoint regulatory regions. We introduce annotation methods that can be used for further classification of regions returned by segmentation and differential methylation methods. Finally, we review software packages that implement strategies to efficiently deal with large bisulfite sequencing datasets locally and we discuss online analysis workflows that do not require any prior programming skills. The analysis strategies described in this review will guide researchers at any level to the best practices of bisulfite sequencing analysis

    Anatomy of BioJS, an open source community for the life sciences

    Get PDF
    BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects

    Multi‐year carbon budget of a mature commercial short rotation coppice willow plantation

    Get PDF
    Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from −147 ± 70 to −502 ± 84 g CO2‐C m−2 year−1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was −87 ± 303 g CO2‐C m−2 for the complete production cycle after accounting for C export at harvest (1,183 g C m−2), and was approximately CO2‐C neutral (−21 g CO2‐C m−2 year−1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy

    Get PDF
    RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. Availability: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench

    Fostering accessible online education using Galaxy as an e-learning platform

    Get PDF
    The COVID-19 pandemic is shifting teaching to an online setting all over the world. The Galaxy framework facilitates the online learning process and makes it accessible by providing a library of high-quality community-curated training materials, enabling easy access to data and tools, and facilitates sharing achievements and progress between students and instructors. By combining Galaxy with robust communication channels, effective instruction can be designed inclusively, regardless of the students’ environments

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    The RNA workbench: Best practices for RNA and high-throughput sequencing bioinformatics in Galaxy

    Get PDF
    RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis
    corecore